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Abstract
A foam drainage model is modified to attempt the description of foams made
of viscoelastic liquids (such as polymer solutions). In particular, the standard
approach to foam drainage dominated by viscous dissipation in Plateau borders
is modified to take into account the elastic forces acting on the fluid within
Plateau borders, and slipping of the polymer solution at the walls of Plateau
borders. It is shown that, in the case of forced drainage, the resulting differential
equations reduce to the same one obtained in the case of Newtonian liquids,
which is satisfied by the well-known solitary wave solution. According to these
results, the fluid elasticity has no effect on the drainage velocity, while the
wall slip assumption is compatible with recent observations showing a faster
drainage velocity in the forced drainage experiment.

1. Introduction

The first attempt to obtain a simple mathematical description of foam drainage was carried
out by Goldfarb et al [1], assuming that the liquid flow in the network of Plateau borders is
analogous to Hagen–Poiseuille flow. In dimensionless form, this equation can be written as

∂α

∂τ
+ ∂

∂ξ

(
α2 −

√
α

2

∂α

∂ξ

)
= 0 (1)

where α is the dimensionless cross-sectional liquid fraction, and ξ the dimensionless coordinate
in the direction of drainage. The same equation was obtained independently by Verbist and
Weaire [2], and it has been studied extensively in the past years [3–5]. A peculiar solution of
equation (1) consists of a solitary wave, which is usually written in the following approximate
form:

α = c tanh2
(√

c |ξ − cτ |) ξ � cτ
α = 0 ξ > cτ.

(2)

This solution can be realized physically in the so-called forced drainage experiment [6], in
which liquid is fed continuously at the top of a cylindrical column of foam, so that a state of
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steady drainage rather than that of equilibrium is approached. This generates a downward-
moving wavefront between a region of high liquid fraction (wet foam) and one of low liquid
fraction (dry foam). The wave amplitude and propagation velocity are determined by the flow
rate of liquid supplied to the system.

There is, however, an alternative approach to foam drainage modelling, based on the
assumption that mechanical energy is dissipated in the nodes rather in the Plateau borders,
which leads to the so-called node-dominated foam drainage equation [7, 8]:

∂α

∂τ
+ ∂

∂ξ

(
α

3
2 − 1

2

∂α

∂ξ

)
= 0. (3)

More recent studies have shown that the surface rheology of soap films plays a major role
in determining the physical mechanism of the liquid flow in the network of Plateau borders,
and therefore the appropriate model to describe foam drainage [9–11]. Roughly speaking, the
former approach (equation (1)) is suitable for the high surface viscosity of soap films (that is,
low surfactant mobility), whereas the latter (equation (3)) can be used to describe foams where
the surfactant is easily soluble in the liquid.

Here, the standard theory of foam drainage for high surface viscosity is extended to
viscoelastic liquids, such as solutions of flexible polymers. These fluids have a great and
continuously growing importance in several applications of practical interest. Among others,
examples are the reduction of turbulent drag in wall-bounded flows [12], and the control of
drop impact on solid surfaces (either homo-thermal [13] or heated [14]).

As it is well known, the shear viscosity of dilute polymer solutions is almost identical to
that of the solvent [15, 16], and very often polymer molecules have little or no surface activity,
so they do not change the surface tension of the pure solvent. However, when polymers are
dissolved in a liquid they do change its fluid-dynamic behaviour: in general, the two most
noticeable effects are viscoelasticity and, in some cases, apparent slip at the walls (which breaks
down the well-known no-slip boundary condition universally used for simple fluids).

At a microscopic level, viscoelasticity is due to the response of the polymer in elongational
flow, where an elementary volume of fluid stretches under the action of the normal components
of the stress tensor. In this case polymer molecules, which are coiled at rest to assume a state of
maximum conformational entropy, unfold under the hydrodynamic action, generating an elastic
force [17]. Such behaviour can be described from a macroscopic standpoint by introducing the
concept of elongational (or extensional) viscosity, the ratio of the first normal stress difference
to the rate of elongation of the fluid:

ηE = σxx − σyy

ε̇xx
(4)

where ε̇xx = du/dx is the velocity gradient in the direction of the elongation. For a Newtonian
incompressible fluid, one can easily verify that the elongational viscosity is three times the
shear viscosity [18]. For a polymer solution the ratio ηE/η, also known as the Trouton ratio,
can be of the order of 103–104.

When the polymer concentration in the solvent exceeds the so-called overlap
concentration, polymer molecules are not isolated but form entangled networks, which resist
shear and tend to slip over the boundaries. For this reason, it was proposed [19, 20] that a
polymer liquid near a solid surface does not obey the standard no-slip boundary conditions but,
instead, that it should be allowed to slip with a (relative) velocity uS, proportional to the applied
viscous stress:

σxy = KSuS. (5)

This effect is similar to the well-known apparent wall slip observed in many yield-stress fluids
made of dense particle suspensions [21, 22] (note that in this case the slip velocity may also
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depend on the tube diameter [23]). In the case of flow within the Plateau borders, the polymer
solution would tend to slip over the surfactant-covered film, provided that there is no strong
attraction between the polymer chains and the surface. Both viscoelasticity and wall slip are
known to affect the formation of soap films, which are made of a liquid layer enclosed between
two surfactant layers and hence are very similar to Plateau borders [24].

This work was motivated by some recent experimental observations on tetradecyltrimethy-
lammonium bromide/dodecanol (TTAB/DOH) aqueous foams, showing that tiny amounts of
polyethylene oxide (PEO) dissolved into the liquid cause a faster displacement of the front
between wet foam and dry foam in the forced drainage experiment [25, 26]. Independent ex-
periments [27] on commercial aqueous film forming foams (AFFFs) showed that the addition
of PEO significantly increased the foam lifetime, from which a reduction of the drainage rate
was suggested.

In principle, both results could be explained by an increase of the surface tension due to the
interaction between the oxygen atoms of the polymer and the polar head of the surfactant at the
monolayer, which was actually observed in experiments on AFFFs. However, measurements on
the TTAB/DOH foam showed that the PEO has no significant effect on the surface tension: for
this system, it was suggested that the elongational viscosity plays a major role in changing the
drainage velocity. Moreover, the increased lifetime of AFFF/PEO systems may not be simply
due to a slower drainage: in fact, the absorption of PEO molecules at the film surfaces might
also retard the collapse of the metastable surfactant bilayer that remains when all the liquid has
been drained. For these reasons, the potential effects of the fluid elasticity and wall slip on
foam drainage deserve some further investigation.

2. Analysis

A modified foam drainage equation suitable for describing the behaviour of polymeric liquids
can be obtained following the same procedure used to derive the foam drainage equation for
Newtonian liquids, that is, by writing a force balance over a small volume of fluid in a vertical
Plateau border of cross-sectional area A. Assuming that the Plateau border is delimited by three
cylindrical surfaces of radius R in mutual contact, simple geometrical considerations allow one
to find that A = β2 R2, with β2 = √

3 − π/2.
For Newtonian fluids, the forces acting on a volume A dx in the flow direction are gravity,

the capillary force and the viscous resistance, so the force balance can be written as

ρg − βγ

2
A− 3

2
∂ A

∂x
− kηu

A
= 0 (6)

where ρ, γ and η are the liquid density, surface tension and shear viscosity, respectively, u is
the cross-sectional average velocity, and k is a geometric factor. For a circular cross-section
k = 8π , whereas for Plateau borders the value k = 49 has been obtained numerically [28].

2.1. Effect of viscoelasticity

To account for the fluid viscoelasticity, one can start from equation (4), which relates the
viscoelastic extra stress to the elongational viscosity; since the flow occurs in the x-direction,
one can assume that σxx � σyy , so

σxx ≈ ηE
∂u

∂x
(7)

and the resulting elastic force in the x-direction is

Fel = ∂

∂x

(
ηE

∂u

∂x

)
. (8)
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For small velocity gradients, which are likely to occur during foam drainage, one can assume
that the elongational viscosity is almost constant, so the elastic force becomes

Fel = ηE
∂2u

∂x2
. (9)

The assumption of constant elongational viscosity is justified in the light of the well-known
finite extensibility rheological models [29], which show that the elongational viscosity of
polymer solutions does not vary significantly until the inverse of the elongation rate is of the
same order as the characteristic time of the solution, a quantity proportional to the difference
between the shear viscosities of the solution and of the solvent. Since for dilute solutions the
difference is very small, significant variations of ηE occur only for velocity gradients as large
as 103, which are not attained during foam drainage.

Taking into account the elastic component, the resulting force balance in the x-direction is

ρg − βγ

2
A− 3

2
∂ A

∂x
+ ηE

∂2u

∂x2
− kηu

A
= 0. (10)

This equation must be modified to take into account the random orientation of Plateau borders
in a real foam, with the substitutions x → x/ cos θ , ρg → ρg cos θ , and u → u/cos θ , and
averaging over all possible directions using the following average operator:

〈◦〉 =
∫ π

0 ◦ sin θ dθ∫ π

0 sin θ dθ
. (11)

The resulting averaged equation is

ρg − βγ

2
A− 3

2
∂ A

∂x
+ ηE

∂2u

∂x2
− 3kηu

A
= 0. (12)

Equation (12) can be rewritten in a dimensionless form by the substitutions x → x
√

βγ

ρg and

t → t 3kη√
βγρg

:

u = A − 1

2
√

A

∂ A

∂x
+ K A

∂2u

∂x2
(13)

where K = ηE/3kη. With k ≈ 50 and ηE � 100η, a numeric estimate of this coefficient is
K � 2/3.

To solve the problem for the cross-sectional area of the Plateau borders A(x, t), the force
balance must be coupled with the continuity equation:

∂ A

∂ t
+ ∂

∂x
(Au) = 0. (14)

To do so, an explicit expression for the velocity u must be derived from equation (13), and
introduced into equation (14). This is not immediately possible, due to the unknown second
derivative of u existing in equation (13). To solve this problem, one can obtain the unknown
term by deriving the continuity equation once with respect to x :

∂2u

∂x2
= − 1

A

{
∂2 A

∂x∂ t
+ u

∂2 A

∂x2
− 2

A

[
∂ A

∂x

∂ A

∂ t
+ u

(
∂ A

∂x

)2
]}

. (15)

Introducing this result into equation (14) yields an explicit expression for u:

u =
1

2K
√

A
∂ A
∂x − A

K + ∂2 A
∂x∂ t − 2

A
∂ A
∂x

∂ A
∂ t

2
A

(
∂ A
∂x

)2 − ∂2 A
∂x2 − 1

K

. (16)
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Now, equation (16) can be used in (14) to obtain the foam drainage equation:

∂ A

∂ t
+ ∂

∂x

( √
A

2K
∂ A
∂x − A2

K + ∂2 A
∂x∂ t A − 2 ∂ A

∂x
∂ A
∂ t

2
A

(
∂ A
∂x

)2 − ∂2 A
∂x2 − 1

K

)
= 0 (17)

where the liquid flow rate Q(x, t) is given by the expression between brackets.
To solve equation (17), for the problem of forced drainage, we search for solutions in the

form of travelling waves, i.e. solutions of the form A = A(x − ct); with the change of variable
X = x − ct , equation (17) becomes

d

dX

(
−cA +

√
A

2K
dA
dX − A2

K − cA d2 A
dX 2 + 2c

(
dA
dX

)2

2
A

(
dA
dX

)2 − d2 A
dX 2 − 1

K

)
= 0; (18)

that is,

cA +
√

A
2

dA
dX − A2

K
[

2
A

(
dA
dX

)2 − d2 A
dX 2

]
− 1

= const. (19)

For K → 0 (i.e., when the viscoelastic term in equation (13) is removed) one obtains the
standard foam drainage equation for Newtonian liquids. Note that due to the approximations
introduced into the model, equation (19) does not converge to the Newtonian equation when
ηE → 3η (i.e., K → 1/k).

When the liquid is poured from the top into a column of dry foam, the wetted area becomes
very small (and constant) for X → +∞, so setting the constant in equation (19) equal to zero is
an acceptable approximation. In this case, provided that K [ 2

A ( dA
dX )2 − d2 A

dX 2 ] 
= 1, equation (19)
reduces to the same equation for Newtonian liquids, which can be obtained from equation (1)
by imposing a solution in the form of a travelling wave.

2.2. Effect of wall slip

If the polymer solution tends to slip at the boundary of Plateau borders during foam drainage,
the shear stress is no longer due to the liquid viscosity, but is related to the slip velocity
according to equation (5). Thus, the force balance given by equation (6) should be rewritten as

ρg − βγ

2
A− 3

2
∂ A

∂x
− KSuS

A
= 0. (20)

In general 0 < KS < kη, where the lower limit corresponds to an infinite slip velocity and the
upper limit to no slip.

From equation (20) one can find immediately an explicit expression for the slip velocity;
however, this is not the actual mean velocity of the fluid inside the Plateau border (i.e., the
velocity we need to substitute in the continuity equation). In general, one can write that the
mean velocity is given by

u = uS + u′ (21)

where u′ depends on the liquid flow rate in the Plateau border.
Using the averaging procedure outlined above, one can find the expression for the averaged

velocity in a network of randomly oriented Plateau borders:

u = 1

3KS

(
ρg A − βγ

2
A− 1

2
∂ A

∂x

)
+ u′. (22)
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The dimensionless form is now obtained with the substitutions x → x
√

βγ

ρg and t → t 3KS√
βγρg

,

and substituting into the continuity equation (equation (14)) yields

∂ A

∂ t
+ ∂

∂x

(
A2 −

√
A

2

∂ A

∂x
+ Au′

)
= 0. (23)

With the variable change X = x − ct one can integrate this equation to search for solutions in
the form of travelling waves, and find that

A = (c − u′) tanh2
(√

c − u′|x − ct|) x � ct
A = 0 x > ct .

(24)

This solution is formally similar to the forced drainage solution for Newtonian liquids
(equation (2)), the main difference being that in the case of wall slip the cross-sectional area
occupied by the liquid is smaller due to the different pre-factor.

To obtain the relationship between the wavefront velocity and the liquid flow rate during
forced drainage, one can observe that the flow rate (i.e., the expression between brackets in
equation (23)) is constant for x = 0, and substitute the values A = c − u′ and ∂ A/∂x = 0
returned by equation (24) when the wavefront is far away from that point (i.e., x � ct), so that

Q(0, t) = c2 − cu′. (25)

Solving equation (25) for c and discarding the negative root yields

c = 0.5u′ +
√

Q + 0.25u′2. (26)

This shows that when one assumes that the liquid may slip at the walls of Plateau borders the
theoretical drainage velocity is faster than it would be if there was no wall slip. In fact, when
the slip velocity vanishes equation (24) reduces to equation (2), and imposing the boundary
condition on the flow rate yields c = √

Q.
Now, one can compare the trend predicted by equation (26) with the drainage velocity

measured in foams made of PEO solutions [25, 26]. According to these results, the wavefront
velocity is proportional to the square root of the flow rate (within experimental error), but
drainage is always faster than in foams made of a Newtonian liquid having the same viscosity.
Thus, equation (26) is consistent with the experimental observations, in the sense that it is
able to predict a qualitative increase of the drainage velocity. Unfortunately, a quantitative
assessment has not been possible so far, because the actual value of the slip coefficient (and
hence the slip velocity) in a real foam is not known, and is probably too difficult (if not
impossible) to be measured directly.

3. Conclusions

The two simple foam drainage models described above allow one to get a deeper insight in the
behaviour of foams made of viscoelastic liquids during forced drainage, and can be used to
explain why some experiments [25, 26] show that drainage is faster with respect to the case of
Newtonian liquids.

When an elastic force is included explicitly in the foam drainage equation, forced drainage
is not affected: as a consequence, the fluid elasticity (or its elongational viscosity) appears to
play no role in the phenomenon. However, this is not sufficient to rule out the elongational
viscosity completely, because the model might miss some important physics (in particular,
the proposed approach may not describe the action of normal stresses on the walls of Plateau
borders appropriately).
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If the no-slip boundary condition for the flow inside Plateau borders is relaxed by
introducing a slip velocity proportional to the wall shear stress, the foam drainage model yields
an expression of the drainage velocity which is consistent with the experimental data. Although
this argument seems to provide a reasonable explanation for the increase of the drainage
velocity, it should be verified by more systematic experiments. In particular, one should check
the behaviour of dilute polymer solutions (i.e., solutions below the overlap concentration),
which should not exhibit significant wall slip.

Acknowledgments

The author thanks Vance Bergeron, Elie Raphaël and Arnaud Saint-Jalmes for useful
discussions. Financial support from the Carnegie Trust for the Universities of Scotland is
gratefully acknowledged.

References

[1] Goldfarb I I, Kann K B and Shreiber I R 1988 Liquid flow in foams Fluid Dyn. 23 244–9 (Official English
Translation of Transactions of USSR Academy of Sciences, Series Mechanics of Liquid and Gas)

[2] Verbist G and Weaire D 1994 A soluble model for foam drainage Europhys. Lett. 26 631–4
[3] Verbist G, Weaire D and Kraynik A M 1996 The foam drainage equation J. Phys.: Condens. Matter 8 3715–31
[4] Goldshtein V, Goldfarb I I and Shreiber I 1996 Drainage waves structure in gas–liquid foam Int. J. Multiphase

Flow 22 991–1003
[5] Koehler S A, Stone H A, Brenner M P and Eggers J 1998 Dynamics of foam drainage Phys. Rev. E 58 2097–106
[6] Weaire D, Pittet N, Hutzler S and Pardal D 1993 Steady-state drainage of an aqueous foam Phys. Rev. Lett.

71 2670–3
[7] Koehler S A, Hilgenfeldt S and Stone H A 1999 Liquid flow through aqueous foams: the node-dominated foam

drainage equation Phys. Rev. Lett. 82 4232–5
[8] Koehler S A, Hilgenfeldt S and Stone H A 1999 Foam Drainage: Experiments and a New Model, Foams and

Films ed D Weaire and J Banhart (Bremen: MIT)
[9] Durand M and Langevin D 2002 Physicochemical approach to the theory of foam drainage Eur. Phys. J. E

7 35–44
[10] Stone H A, Koehler S A, Hilgenfeldt S and Durand M 2003 Perspectives on foam drainage and the influence of

interfacial rheology J. Phys.: Condens. Matter 15 S283–90
[11] Saint-Jalmes A, Zhang Y and Langevin D 2004 Quantitative description of foam drainage: transitions with

surface mobility Eur. Phys. J. E 15 53–60
[12] Nieuwstadt F T M and den Toonder J M J 2001 Turbulent drag reduction by additives: a review Turbulence

Structure and Modulation (CISM Courses and Lectures No 415) ed A Soldati and R Monti (Berlin: Springer)
[13] Bergeron V, Bonn D, Martin J Y and Vovelle L 2000 Controlling droplet deposition with polymer additives

Nature 405 772–5
[14] Bertola V 2004 Drop impact on a hot surface: effect of a polymer additive Exp. Fluids 37 653–64
[15] Sridhar T, Tirtaatmadja V, Nguyen D A and Gupta R K 1991 Measurement of extensional viscosity of polymer

solutions J. Non-Newton. Fluid Mech. 40 271–80
[16] Mun R P, Young B W and Boger D V 1999 Atomisation of dilute polymer solutions in agricultural spray nozzles

J. Non-Newton. Fluid Mech. 83 163–78
[17] Strobl G 1997 The Physics of Polymers 2nd edn (Berlin: Springer)
[18] Trouton F T 1906 On the coefficient of viscous traction and its relation to that of viscosity Proc. R. Soc. A 77

426–40
[19] de Gennes P-G 1979 Viscometric flows of tangled polymers C. R. Acad. Sci. B 288 219–20
[20] Brochard F and de Gennes P-G 1984 Spreading laws for liquid polymer droplets—interpretation of the foot

J. Phys. Lett. 45 597–602
[21] Mooney M 1931 Explicit formulas for slip and fluidity J. Rheol. 2 210–22
[22] Barnes H A 1995 A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions

in viscometers: its cause, character, and cure J. Non-Newton. Fluid Mech. 56 221–51
[23] Jastrzebski Z D 1967 Entrance effects and wall effects in an extrusion rheometer during the flow of concentrated

suspensions Ind. Eng. Chem. Fundam. 6 445–53

7

http://dx.doi.org/10.1007/BF01051894
http://dx.doi.org/10.1088/0953-8984/8/21/002
http://dx.doi.org/10.1016/0301-9322(96)00030-4
http://dx.doi.org/10.1103/PhysRevE.58.2097
http://dx.doi.org/10.1103/PhysRevLett.71.2670
http://dx.doi.org/10.1103/PhysRevLett.82.4232
http://dx.doi.org/10.1007/s10189-002-8215-0
http://dx.doi.org/10.1088/0953-8984/15/1/338
http://dx.doi.org/10.1140/epje/i2004-10036-x
http://dx.doi.org/10.1038/35015525
http://dx.doi.org/10.1007/s00348-004-0852-9
http://dx.doi.org/10.1016/0377-0257(91)87012-M
http://dx.doi.org/10.1016/S0377-0257(98)00135-9
http://dx.doi.org/10.1122/1.2116364
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1021/i160023a019


J. Phys.: Condens. Matter 19 (2007) 246105 V Bertola
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